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Abstract. The generalized gradient approximation (GGA) for the exchange–correlation energy
has recently become available in a simple form that can be used in place of the local density
approximation (LDA). We have applied this simplified GGA within a self-consistent LMTO
method to study the equilibrium volume and bulk moduli of 3d and 4d transition metals. We
have obtained systematic improvements of the results in comparison with those obtained using
the LDA.

1. Introduction

Density functional theory (DFT) is considered a standard model for low-energy physics,
describing atoms, molecules and solids [1, 2]. In DFT the exact functional for the exchange–
correlation energy (Exc) is unknown, so one has to rely on trial functionals satisfying
necessary constraints. In this respect the so-called local density or local spin-density
approximation (LDA/LSDA) has been considered a major achievement in the electronic
structure theory of materials. Two main assumptions under the LDA are that the electron
density is supposed to be approximately uniform on the scale of the exchange–correlation
hole and that the exchange–correlation hole is centred on the electron producing the hole.
Neither of these assumptions is well satisfied when applied to real systems. The size of the
exchange–correlation hole is comparable to the size of an atom, and for an electron in the
outer part of an atom the major part of its exchange–correlation hole remains in the inner
part of the atom where the electronic density is high. Because the total energy depends
only on the spherical average of the exchange–correlation hole it is rather insensitive to
the distortions of the exchange–correlation hole due to inhomogeneities of the electronic
density. However, the total energy is sensitive to those inhomogeneities of the electronic
density which make the exchange–correlation hole off-centre. Generally the LDA works
well, but for certain properties and if results with chemical accuracy are needed the theory
has to go beyond the local density level.

The last decade witnessed several interesting developments in the exchange–correlation
functional [3] and in the 1990s a number of attempts have been made to incorporate
the inhomogeneity effects in the energy functional [4]. One natural way to include the
inhomogeneity effects into the exchange–correlation energy is to use the gradient expansion
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approximation (GEA) [5]. However, the GEA encounters certain problems due to the
fact that in practical applications the expansions have to be truncated. To overcome
these difficulties, the so-called generalized gradient approximations (GGA) [5] have been
introduced:

EGGAxc [n↑, n↓] =
∫

d3r f (n↑, n↓,∇n↑,∇n↓) (1)

wheren↑ and n↓ are the electronic densities for up and down spins, respectively. In the
GGA the problems encountered in the GEA can be avoided by effectively summing an
infinite series of powers of the gradient of the electronic density. The GGA seems to be
popular now in the quantum chemistry and condensed matter literature. On comparing to
the results obtained by the LSDA it is apparent that the GGA improves the accuracy of a
number of quantities such as the total energy, atomization energy and structural energies. It
has also been shown to correct [6] and sometimes to overcorrect [7] the equilibrium volume
and bulk modulus. Generally, the GGA seems to take the inhomogeneity effects properly
into account and to improve the LSDA results.

The semilocal form (1) ofExc is too restrictive to reproduce all the known behaviours
of the exact exchange–correlation functional. This deficiency leads problems in using an
exchange–correlation functional if as many exact conditions as possible have been used in
the construction of this particular functional. In their recent work, Perdewet al [8] have
obtained a simple form of the GGA in which all of the parameters (other than those in
the LSDA) are fundamental constants. The features which have been sacrificed compared
to their previous exchange–correlation functional [9] are: (1) correct second-order gradient
coefficients forEx andEc in the slowly varying limit; and (2) correct non-uniform scaling
of Ex in limits where the reduced gradients = |∇n|/(2kFn) → ∞ (n = n↑ + n↓).
Notwithstanding the simplified form of the resulting functional, it gives results close to
those derived from the numerical GGA.

In the following we quote briefly the main features used by Perdewet al [8] in the
construction of the new simplified GGA. The GGA correlation is expressed as

EGGAc [n↑, n↓] =
∫

d3r n[εunifc (rs, ζ )+H(rs, ζ, t)] (2)

where rs is derived from n (n = 3/(4πr3
s ) = k3

F /(3π
2)), ζ = (n↑ − n↓)/n and

t = |∇n|/(2φksn). φ(ζ ) = [(1 + ζ )2/3 + (1 − ζ )2/3]/2 and ks =
√

4kF /(πa0) where
a0 = h̄2/me2. The gradient contribution toH is constructed using the following three
conditions:

(A) H → (e2/a0)βφ
3t2, β ' 0.066 725 whent → 0;

(B) H →−εunifc when t →∞;
(C) H → (e2/a0)γ φ

3 log t2, γ = (1− log 2)/π2 whenn(r)→ λ3n(λr), λ→∞.

The above three conditions are satisfied by the simpleansatz

H = (e2/a0)γ φ
3 log

{
1+ β

γ
t2
[

1+ At2
1+ At2+ A2t4

]}
(3)

where

A = β

γ
[exp{−εunifc /(γ φ3e2/a0)} − 1]−1. (4)

The GGA for the exchange energy is constructed from four further conditions:

(D) EGGAx = ∫
d3r nε

unif
x (n)Fx(s) when n(r) → λ3n(λr), λ → ∞, ζ = 0, where

ε
unif
x = −3e2kF /(4π) andFx(0) = 1;
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(E) Ex [n↑, n↓] = (Ex [2n↑] + Ex [2n↓])/2;
(F) Fx(s)→ 1+ µs2, µ = β(π2/3), whens → 0, ζ = 0;
(G) Ex [n↑, n↓] > Exc[n↑, n↓] > −1.679e2

∫
d3r n4/3.

A simple form satisfying (F) and (G) is

Fx(s) = 1+ κ − κ/(1+ µs2/κ) κ = 0.804. (5)

The exchange–correlation energy can be written as

EGGAxc [n↑, n↓] =
∫

d3r nεunifx (n)Fxc(rs, ζ, s) (6)

where the enhancement factorFxc is required to satisfy the above conditions from (A) to
(G).

The functional obtained is easy to implement for any electronic structure calculations.
Perdewet al [8] tested it for the atomization energy of small molecules and found it to
give similar results to their former GGA version [9]. The full-potential linearized muffin-
tin orbital (FP-LMTO) calculations with the former version of the GGA [9] for two 3d,
eight 4d and six 5d transition metals show that the introduction of the gradient corrections
improves the accuracy of the equilibrium volumes and bulk moduli for all of the transition
metals investigated [6]. In view of the availability of the new simplified GGA functional
[8], we formed the purpose of presenting some ground-state properties of all of the 3d and
4d transition metals calculated using the new functional to see how different the results
are from those obtained previously. By performing a systematic study for both the 3d and
4d transition metals one can analyse how the results change with the progressive filling
of the valence and core electronic shells of an atom. This is of particular interest if one
is investigating the effects of gradient corrections to the exchange–correlation potential,
because the effects produced are expected to depend on the changes in the inhomogeneity
of the electronic density. Considering the whole series of the 3d and 4d transition metals, one
can probe the inhomogeneity effects thoroughly, because the localization of the valence d
orbitals changes from element to element. The localization of the d orbitals of the transition
metals increases when going from the beginning of the series to the end of the series, the
most localized orbitals being the antibonding orbitals at the top of the d band. Also the
valence d orbitals of the 3d metals are more localized than the corresponding orbitals of the
4d metals.

2. Calculational method

The present work deals with general trends among a large number of elements rather than
the properties of a single element. Our aim is to study how the replacing of the LDA
by the new simplified GGA affects the ground-state properties of 3d and 4d metals as a
function of the gradual filling of the electronic shells in these materials. The calculational
method used was chosen as being fast but accurate enough to give the trends reliably. The
calculations were performed using the scalar relativistic self-consistent-field LMTO method
[10, 11] with the atomic sphere approximation (ASA) and the combined correction terms.
The valence states were expanded using spherical harmonics up tolmax = 3. The core
states were taken from atomic calculations and treated with the frozen-core approximation
in the band-structure program. Thek-space integrations were done with 916 and 819k-
points in the irreducible wedge of the fcc and bcc Brillouin zones, respectively. All of
the calculations were performed using the non-spin-polarized scheme, thus referring to the
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paramagnetic ground state. The pressure (P ) was calculated with nine different Wigner–
Seitz radii (rWS) for each metal [12–14]. From theP versusrWS curve obtained, the
equilibrium Wigner–Seitz radius (r0

WS) and bulk modulus (B) were then extracted. We
used the observed crystal structures for the fcc and bcc metals, but the elements with more
complicated crystal structures were treated as fcc. This is acceptable becauserWS andB
depend only weakly on the crystal structure. For the exchange–correlation potential we
used two different approximations: the LDA presented by Perdew and Wang [15] and the
recent simplified version of the GGA developed by Perdewet al [8].

Figure 1. The equilibrium Wigner–Seitz radius (r0
WS) and bulk modulus (B) of the 3d and 4d

transition metals. The experimental data [16, 11] are represented by open circles, while the
chain and dotted curves refer to LDA and GGA results, respectively.

3. Results and discussion

Our LDA calculations predict correctly the general trends shown byr0
WS andB within the

3d and 4d transition metal series, except in the case of the magnetic 3d metals (figure 1).
The discrepancy obtained between the calculated and experimental results for the 3d metals
from Cr to Ni is expected, because spin polarization was not included in our calculations.
Both r0

WS andB show a parabolic behaviour as a function of the number of d electrons
(nd). The relation betweenr0

WS andB, namely that smallerr0
WS implies largerB, was also

obtained. Both trends have been explained successfully by using the energy band picture
of solids [17]. The amazing success of the LDA in this kind of calculation is at least partly
due to the fact that the total energy of the electronic system does not depend so much on
the shape of the exchange–correlation hole as on its spherical average [18]. For the 3d
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series, the minimum of ther0
WS curve is atnd = 7 and the maximum of the curve forB

is at nd = 5; the corresponding values for the 4d series arend = 7 and 6. In the case of
the 4d metals we can compare this with experiments, where the minimum ofr0

WS and the
maximum ofB are both atnd = 6.

In comparing our LDA calculations with the experimental data at a more quantitative
level, we exclude the cases of Mn, Fe and Co, for which the magnetization plays the most
important role. The overall agreement of our LDA results with experiments is of the same
order as that of the other corresponding calculations at the same computational level. For
the 3d metals the LDA gives 2–3% too small values ofr0

WS and 30–60% too large values of
B compared to the experimental data. Apart from the slight decrease when going from Sc to
Ti, the discrepancy inr0

WS increases with the increasing filling of the d band (increasingnd).
For the 4d metals the discrepancy inr0

WS is generally smaller than for the 3d metals. Also,
in this case, the calculated results are smaller than the experimental ones: the deviation is
1.5% for Y, decreasing to the level of 0.5% for Zr, and staying at that level up to Tc, after
which it starts to increase again, and reaches the largest value of 3% for Ag. The calculated
bulk modulus of the 4d metals is 20–60% larger than the experimental one. Like in the
case ofr0

WS, the smallest relative discrepancy is found in the middle part of the series.

Table 1. The differences of the GGA results from the LDA results.

Sc Ti V Cr Mn Fe Co Ni Cu

1r0
WS (%) 3.7 2.9 2.4 2.2 2.2 2.3 2.5 2.9 3.5

1B (%) −18 −17 −15 −15 −17 −18 −21 −23 −30

Y Zr Nb Mo Tc Ru Rh Pd Ag

1r0
WS (%) 3.8 2.6 1.8 1.5 1.5 1.7 2.0 2.7 3.8

1B (%) −23 −16 −15 −12 −14 −16 −20 −28 −36

In the following we consider the effects that are produced when the LDA is replaced
by the new GGA. For all of the metals investigated the GGA increasesr0

WS and decreases
B. The changes due to using the GGA compared to the LDA are the following. For the 3d
metalsr0

WS is increased by 2.2–3.7% andB is decreased by 15–30%. For the 4d metals the
corresponding changes are 1.5–3.8% forr0

WS and 12–36% forB. It is interesting to note
that the GGA correction to the LDA results shows the same general trend within both the
3d and 4d transition metals (table 1). The relative correction due to the GGA is smallest in
the middle part of the series, being typically 1.2–3 times smaller than at the beginning and
at the end of the series for bothr0

WS andB. This can be explained in the following way.
The lattice expansion and the filling of the d band by the antibonding states both increase
charge-density inhomogeneities which leads to larger gradient corrections. When going
from the beginning of the transition metal series towards the end of the series the volume
decreases (figure 1) leading to the gradual decrease of the gradient corrections. However,
at the end of the series the filling of the antibonding states increases the inhomogeneities
of the electronic density leading to the re-entrant increase of the gradient corrections at
the end of the series. The same effect can be seen also in the FP-LMTO results for 4d
transition metals [6]. Due to the non-linearity of the GGA corrections as a function of
nd, the parabolic shape of the curves forr0

WS andB changes slightly. This shows up, for
instance, in the change of the minimum position of ther0

WS curve of the 4d metals from Rh
to Ru which is also the experimental minimum point.

There have been several theoretical investigations of the cohesive properties of transition
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metals using various calculational methods and different approximations. Here, however,
it is possible to refer to only a few of them. The Korringa–Kohn–Rostoker muffin-tin
calculations of Moruzziet al [17] have shown that sophisticated LDA calculations are able
to produce the observed general trends of the experimentalr0

WS andB of transition metals.
The LMTO-ASA calculations of Andersenet al [12] give results forr0

WS which are a few
per cent smaller than the experimental ones, and the discrepancy is somewhat larger than
that found in the work of Moruzziet al [17].

LDA−ASA                LDA−FP

GGA−ASA                GGA−FP

LDA−ASA                LDA−FP

GGA−ASA                GGA−FP

−2%

−2%

+2%+2%

+5%

−10%

−1%

−16%

(a)

(b)

Figure 2. The average changes ofr0
WS (a) andB (b) on making different approximations [6].

In spite of the general success of the LDA calculations, quantitative agreement between
theory and experiment was not achieved. In this respect several attempts to go beyond the
LDA have been made. One of these is that based on the GGA. The GGA calculations
made by using the LMTO-ASA method [19] have shown that the introduction of the
GGA improves the structural properties of 3d metals, but for 4d and 5d metals the GGA
results were worse than the LDA results. However, later it was found that the ASA yields
systematically larger equilibrium volumes than the full-potential treatment [6]. Considering
the LDA and GGA results of the ASA and FP calculations for 3d and 4d metals [6], one
can estimate the average changes ofr0

WS andB caused by using different approximations.
A graph of these changes is shown in figure 2. The data in figure 2 can be compared with
our results for the new simplified GGA. Replacing the LDA by the new GGA increases
r0

WS by 2.3% and decreasesB by 18% (the average values are estimated by using the same
set of 3d and 4d metals as were used in reference [6]). Thus the new simplified GGA
seems to lead to somewhat larger changes when it is used instead of the LDA than the
former GGA version [9]. Our calculations also lead to slightly smallerr0

WS and largerB
than the ASA-LMTO calculations by K̈orling and Ḧaglund [19]. This may be at least partly
due to the fact that we have used the pressure [12–14] of the system directly to determine
the equilibrium quantities instead of fitting the total energy to the equation of state of the
system. In our case the use of the total energy fitting leads to slightly largerr0

WS and smaller
B correspondingly. The use of the pressure relation is considered to be more accurate than
the use of the total energy [11].

4. Conclusion

In conclusion, the new simplified GGA seems to work well also in the case of solid 3d and
4d metals. However, compared to the LDA results it tends to increaser0

WS and decreaseB
more than the former GGA version. Gradient corrections are larger both at the beginning
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and at the end of the transition metal series than in the middle part of the series. This
phenomenon is attributed to the bonding properties of the d states of the transition metals.
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[6] Ozoliņš V and K̈orling M 1993Phys. Rev.B 48 18 304
[7] Filippi C, Singh D J and Umrigar C J 1994Phys. Rev.B 50 14 947
[8] Perdew J P, Burke K and Ernzerhof M 1996Phys. Rev. Lett.77 3865
[9] Perdew J P 1991Electronic Structure of Solids 1991ed P Ziesche and H Eschrig (Berlin: Akademie)

[10] Andersen O K 1975Phys. Rev.B 12 3060
[11] Skriver H L 1984 The LMTO Method. Muffin-Tin Orbitals and Electronic Structure(Berlin: Springer)
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